INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 3905-3927

Wave scattering by cracks in inhomogeneous continua
using BIEM

G.D. Manolis **, P.S. Dineva °, T.V. Rangelov ©

& Department of Civil Engineering, Aristotle University, Panepistimioupolis, P.O. Box 502, Thessaloniki GR-54006, Greece
b Department of Continuum Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
¢ Department of Mathematical Physics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Received 14 July 2003; received in revised form 16 February 2004
Available online 19 March 2004

Abstract

Elastic wave scattering by cracks in inhomogeneous geological continua with depth-dependent material parameters
and under conditions of plane strain is studied in this work. A restricted case of inhomogeneity is considered, where
Poisson’s ratio is fixed at one-quarter, while both shear modulus and density profile vary with depth, but proportionally
to each other. Furthermore, time-harmonic conditions are assumed to hold. For this type of material, the body wave
speeds remain macroscopically constant and it becomes possible to recover exact Green functions for the crack-free
inhomogeneous continuum by using an algebraic transformation method proposed in earlier work as a first step. In a
subsequent step, the complete elastodynamic fundamental solution along with its spatial derivatives and an asymptotic
expansion for small argument, are all derived in closed-form using the Radon transform. Next, a non-hypersingular,
traction-based boundary integral equation method (BIEM) formulation for solving boundary-value problems with
internal cracks is presented. Specifically, the BIEM is used for computing stress intensity factors and scattered wave
displacement amplitudes for an inclined line crack in an otherwise inhomogeneous continuum that is being swept by
either pressure waves or vertically polarized shear waves at an arbitrary angle of incidence with respect to the horizontal
direction. The numerical results obtained herein reveal substantial differences between homogeneous and continuously
inhomogeneous materials containing a crack in terms of their dynamic response, where the latter case is assumed to give
a more realistic representation of geological deposits compared to the former one. Finally, these types of examples plus
the benchmark case used for validation, serve to illustrate the present approach and to show its potential for solving
complex problems not just in geophysics, but also in mechanics.
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1. Introduction

Elastic wave propagation through media with complex structure is of paramount importance in various
engineering fields, including dynamics of composite materials, non-destructive testing evaluation, geo-
physical studies of the earth’s interior, earthquake-induced ground motion prediction, soil-structure
interaction, oil prospecting, etc. (Ewing et al., 1957; Helbig, 1994; Nayfeh, 1995; Panza et al., 2000).
Focusing geological continua, the physical problem behind travelling elastic waves involves reflection,
refraction, diffraction and scattering phenomena that are difficult to quantify. Additional phenomena that
must be accounted for are soil layering (Thomson, 1950; Haskell, 1953; Lysmer and Waas, 1972; Kausel,
1981), material inhomogeneity and anisotropy (Kausel, 1986; Vrettos, 1990, 1991; Fah et al., 1993; Wang
and Achenbach, 1993; Kim et al., 1999), material non-linearities (Nowacki, 1978), material periodicity
(Sotiropoulos, 1993), and existence of a second phase within the skeleton material (Chen, 1994; Tadeu
et al., 2002). The presence of various types of discontinuities (Tadeu et al., 1996) and cracks (Zhang and
Gross, 1998) in the soil further increases the complexity of the overall picture. Specifically, cracks not only
act as wave refractors and scatterers, but also as stress concentration points. At the crack tips, a square-root
stress singularity exists, whose strength is described by the stress intensity factor (SIF) as defined in linear
elastic fracture mechanics, and may lead to localized material failure. In general, the complexity of
problems involving geological media is such that most of the aforementioned phenomena are examined
separately.

During the last few decades, the volume of work on elastic wave propagation in non-homogeneous
media has become quite vast, but essentially three groups of methods can be distinguished, namely (i)
analytical, (ii) numerical and (iii) hybrid. Analytical methods are based on certain key concepts, such as ray
theory (Babich, 1956; Pao and Gajewski, 1977), mode matching techniques (Knopoff, 1964; Schwab and
Knopoff, 1970; Panza, 1985) and integral representation theorems (Herrera, 1964). Ray theory and mode
matching are effective methods for regions with simple geometry, dimensions larger then the wavelength of
the propagating signal, and layered medium structure with slowly varying velocity. An important tool in
the numerical analysis of wave motion through irregular 2D soil media is the analytical construction of
transmitting boundaries, which is equivalent to a continuation of the finite element mesh used for modeling
the medium in question to infinity, with obvious computational advantages (Lysmer and Waas, 1972). An
accurate analytical method for obtaining Green’s functions (or fundamental solutions) for point forces
acting in a layered medium is due to Kausel (1981), which provides a general framework for handling loads
of arbitrary spatial-temporal variation by using Fourier and Hankel transforms. This work was later ex-
tended (Kausel, 1986) for wave propagation in fully anisotropic, layered media and the resulting functions
can be used in numerical simulations of general boundary value problems.

One particularly efficient numerical method that has emerged from integral representation theory is the
BIEM (Cruse, 1968), and its use has since been extended to a wide spectrum of dynamic analyses (Beskos,
1997). The advantages of the BIEM are reduction in the dimensions of the problem, implicit satisfaction of
the radiation conditions associated with unbounded domains, solution at internal points in the domain
exclusively in terms of boundary data, and the possibility to model multi-layered regions with complex
geometry with good accuracy (Dominguez, 1993). As such, it is a good candidate for use in problems
involving elastic wave propagation through fractured, inhomogenecous geological media (Dineva and
Gavrilova, 2000, 2001). Finally, hybrid methods have also been formulated by combining finite elements
and boundary elements in an effort to optimize the performance of each constituent method (Bielak et al.,
1991; Moczo et al., 1997; Song and Wolf, 1998; Lie et al., 2000).

The mathematical background behind wave motion in non-homogeneous media involves solution of
partial differential equations (PDE) with variable coefficients. In general, these equations do not possess
explicit and easy to calculate fundamental solutions (or Green’s functions), which prevents reduction of the
physical boundary-value problem (BVP) to a system of boundary integral equations that can subsequently
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be processed by standard numerical quadrature techniques. As far as recent work along these lines is
concerned, we mention the work of Vrettos (1990, 1991) on the propagation characteristics of elastic waves
(pressure and polarized shear surface waves, Rayleigh waves, etc.) through uniform soil deposits with
vertical inhomogeneities of various types, such as bounded exponential shear modulus, a general power law
shear modulus, etc. Manolis and Shaw (1996, 2000) derived Green functions for 2D and 3D continua using
the relatively simple concept of algebraic transformations. The drawback is that the dynamic solutions
recovered are valid for rather restricted cases of inhomogeneity. Also, Mikhailov (2002) constructed a
special class of localized matrices (in lieu of a proper fundamental solution), which reduce the general BVP
with variable coefficients to a localized integro-differential equation system that is amenable to numerical
treatment. Ang et al. (2003) proposed a dual-reciprocity BIEM for numerical solution of 2D problems
governed by elliptic-type partial differential equations with variable coefficients, while a multiple crack
problem under anti-plane conditions was considered for a class of inhomogeneous anisotropic elastic
materials in Ang et al. (1999). Finally, Azis and Clements (2001) derived boundary integral equations for
numerical solution of PDE that described the static deformations of inhomogeneous and anisotropic
materials.

The basic aim of the present work is development of a non-hypersingular, traction-based BIEM for
solving 2D, steady-state elastic wave propagation problems through cracked inhomogeneous geological
deposits with material parameters that vary quadratically with respect to the depth coordinate. The ensuing
transient elastodynamic analysis is done by synthesizing the frequency domain results. Previous efforts
(Dineva and Manolis, 2001) regarding seismic wave propagation in finite-type geological regions with non-
parallel layers, surface topography and interface as well as internal cracks, serves as a springboard for this
work. That particular problem was solved by a combination of displacement and hypersingular traction
BIEM and the numerical results (free-surface displacement field and stress concentration at the crack-tips)
were found to be sensitive to various problem parameters and especially to the interaction effect manifested
between multiple cracks. The novelty of the present work lies primarily in modeling soil inhomogeneity
(Manolis, 2003). Computation of parameters such as crack opening displacement (COD) and stress con-
centration factor (SIF) yields useful information in understanding the physical processes that develop in
geological formations as they are swept by incoming waves and help generalize previously obtained free-
field studies and wave diffraction results in the presence of discontinuities.

It should be mentioned at this point that there is recent interest in fracture mechanics problems when the
underlying material is no longer homogeneous. For instance, Yue et al. (2003) have studied mode I and II
SIF for cracks in functionally graded materials (FGM), whereby two dissimilar homogeneous layers are
joined by an intermediate layer with an exponentially varying shear modulus. The static BIEM with a
generalized Kelvin solution as its kernel is used, and the influence of both non-homogeneity and layer
thickness on the SIFs is studied for elliptical cracks placed at the material interfaces. In Zhang et al. (2003),
transient crack analysis in an FGM is studied by using a hypersingular, time domain BIEM. In the absence
of an exact Green’s function (which may not be available for all types of inhomogeneities), a convolution
quadrature formula is adopted for the transient part, while Galerkin’s method is applied for the spatial
discretization part. Numerical results are recovered for transient SIFs pertaining to a finite crack subjected
to impact loading under anti-plane strain conditions. In both works, the influence of inhomogeneity is
clearly discerned from the results.

The paper is structured as follows: First, the BVP formulation is given in Section 2. Next, fundamental
solutions for the governing equations of motion are obtained in Section 3 by combining an algebraic
transformation with the Radon transform. Section 4 presents the non-hypersingular traction BIEM for-
mulation and discusses numerical implementation aspects, including validation studies. A series of
numerical examples involving an inclined line crack in an inhomogeneous plane subjected to steady-state
pressure (P) and vertically polarized shear (SV) waves with variable incidence angles are then solved in
Section 5. Finally, the paper closes with a list of conclusions regarding the aforementioned physical
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problem, whose true complexity presents daunting challenges. It should be mentioned in closing that the
present method can be applied to other problems in dynamic fracture mechanics, such as non-destructive
testing evaluation of man-made materials.

2. Boundary-value problem formulation

Consider an R? continuum that is heterogeneous with position-dependent material parameters (e.g.,
Lamé moduli 2 = A(x), u = p(x) and density p = p(x), where x = (x1,x,)), as shown in Fig. 1. The gov-
erning equations of motion in the absence of body forces and in the frequency domain are

0ij,(x, 0) + p(x)0’u;(x, ) = 0 (1)

where the equilibrium operator is a;;;(x, ) = {A(x)urs(x, )}, + {p(x) (i j(x, ) + u;(x, ))}; (Ewing
et al., 1957) and the second term are the inertia forces.
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Fig. 1. Incident pressure (P) and vertically polarized shear (SV) waves in a cracked inhomogeneous plane.
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It is assumed here that (i) the material parameters are functions of only one spatial co-ordinate, namely
depth x,, and more specifically that u(x) = A(x) = h(x)u,, where h(x) = (ax, + b)*; (i) Poisson’s ratio is
equal to v=0.25; (iii) the material density profile is proportional to the shear modulus profile, i.e.,
p(x)/p(x) = py/py or more precisely, p(x) = poh(x), where iy, p, > 0 and a, b are constants. The null
subscript indicates reference values that must be prescribed, while the homogeneous case corresponds to the
value a = 0. The equations of motion (1) form an elliptic system of PDE, except along line x, = —b/a,
where they degenerate.

Let S, C R? define a crack as an open arc, i.e., S = S+ U S;. The angle of the crack with respect to the
horizontal axis Ox; is ¢ € (—n/2,7/2), while the incident elastic waves trace an angle 0 from Ox; (see Fig.
1). It is assumed that the crack does not intersect the line x, = —b/a, i.e.,

S N{x2=—bJa} =10 (2)
Also, the crack is traction-free
5e =0 3)

where tractions # = o;;#; and n; is the unit normal vector on S;}. The stress tensor is equal to a;; = Cyjimltscm>
With Cijm = h(x)Cg.km, and C?jkm = Uy(0;j0km + OwOjm + dimdj) the standard form for a homogeneous con-
tinuum.

In earlier work, Manolis and Shaw (1996) derived an algebraic transformation for the displacement
vector of the type

4

u;(x, ) = h_l/z(x)U(x, ) in R*\ {x, = —b/a} 4)

where U(x,w) is a solution for the dynamic equilibrium equations expressed in terms of the equivalent
homogeneous medium case as

T+ px)w*U; =0 (5)

The corresponding equilibrium operator here is X;; = u(x)U;; + 2u(x)U;;;. Also, the traction-free

Jiijt
boundary condition of Eq. (3) written for U(x, w) is as follows:

WO Cny (1 () U,

ijkm""J]

=0 ()

Ser

We note that the above boundary condition does not degenerate due to the presence of Eq. (2), i.e.,
p(x)]g, # 0. This is known as a boundary condition of the third type (Ladyzenskaja and Urall’tzeva, 1973).
Next, proceeding as in Wendland and Stephan (1990), it can be shown that the BVP defined by Egs. (5) and
(6) has a weak solution in an appropriate Sobolev space and that this solution is unique if a Sommerfeld-
type radiation condition is satisfied at infinity (Vainberg, 1982).

Our aim here is to find a solution of the BVP defined by Egs. (1) and (3) by utilizing the BIEM, which in
turn is formulated in terms of the ancillary (transformed) problem defined by Eqgs. (5) and (6). This BIEM
solution will yield the jump in the displacement field across the crack (i.e., the COD) and the SIF at the
crack tip for an inclined crack buried in the inhomogeneous plane as it is swept by incoming elastic waves.

3. Fundamental solutions for the inhomogeneous continuum

We will first derive fundamental solutions for the displacements and tractions and then compute their
asymptotic form for small argument.
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3.1. Displacement and traction fundamental solutions

A fundamental solution (or Green’s function) Uy (x, ¢) for Eq. (5) is a solution of the following trans-
formed PDE system:

ey T PP Uy = —h P ()o(x — &) (7)

which is defined in domain (R?\ {x; = —b/a}) x (R?\ {& = —b/a}). Similarly, fundamental solution
ujfj(x, &= h’l/z(x)U;;. is the original Green’s function corresponding to the PDE system defined in the
physical domain, i.e.,

27

Uk/ + plx )wzufk = —d(x—¢) (8)

in domain (R} \ {x; = —b/a}) x (R} \ {& = —b/a}). In terms of notation, superscript x in o7} ; indicates
differentiation with respect to spatial coordinate x, while d(x, &) = d(x; — &,)d(x, — &,) is the Dirac delta
function in 2D.

Eq. (7) is solved by the Radon transform (Zayed, 1996), which is defined in the space of rapidly
decreasing functions as

Fem=r)=[  fl)di= / F)6(s — o, m)) e 9)

(x,m)=s

and where (,) denotes the scalar product in R*.
The inverse Radon transform is R~'(f) = R*(Kf) where

Fls,m) =Kf = / {_“Gm (10)
and
- 1

|m|=1

The Radon transform is linear, ie., R(of + fg) = aR(f) + pR(g), differentiation is defined as
R(Q,,f) = m;0, £ (s,m), and finally Dirac’s delta function transforms as R(d(x)) = d(s). We mention at this
point that the Radon transform was recently used by the authors (Manolis et al., 2003) in the derivation of
fundamental solutions for the non-homogeneous biharmonic equation governing bending of plates sup-
ported on an elastic half-space.

The PDE system given by Eq. (7) can be written in compact form using matrix notation as follows:

1
T h2(x) o(x, &) (12)

(L) + py’)U* =
where
_ (3% 4+, 28,
L@““( 2, o+ 30

Given that the source (or load point) is ¢ € R% \ {&, = —b/a} and the receiver (or field point) is
x € R*\ {x, = —b/a}, the above right-hand side becomes

i ~Jo. —
_hl/z(x) (3()6, 5) - { _h]/+(§)5(0)’ x = f
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which implies that:

(x, &) (x, &) (13)

1 1
—0 =——0
h1/2(x) hl/Z(é)

The next step is to define

~ . . 3m% —|—m§ 2mymy
0 =R, L) = A

with |m| = 1. Since R(d(x,&)) = [d(x, &)d(s — (x,m))dx = 6(s — (m, £)), application of the Radon trans-
form to both sides of Eq. (12) yields
~ 1
(L)} + ) U = ol = (m, ) (14)

where I, is the unit matrix in 2D.

In order to solve Eq. (14), it is necessary to transform L(m) into canonical form. To that purpose, the
eigenvalues of operator L(m) are computed as a; = 3y,, a» = 1, and the corresponding normalized ei-
genvectors are y; = (mi,my), y, = (—my, m;), obeying the usual conditions of y, L 9,, |y,| = 1. The eigen-
vector matrix is denoted as

()
n; m

which implies that the inverse is equal to the transpose, i.e.,

T—l _ Tl — m ny
—my; m

and that TU = V, where V is the fundamental solution corresponding to the uncoupled equations of
motion. Left-hand side multiplication of Eq. (14) by T~! gives
(402 + py’L) V = fLT—la(s — (m, &) (15)
s Po 2 ]’ll/z(f) 3

where

A=T1L(m)T:<aOl c?z>:<(3> (1))

is the diagonal operator indicating uncoupling of the transformed equations of motion. Eq. (15) are
essentially four ordinary differential equations of the type

(aod? 4 bo) W = 7,6(s — 1) (16)
Following Vladimirov (1984), the solution of Eq. (16) can be obtained in the following form:

W= oyeet T, oy = ﬁ k=, /a—z. (17)

The next step is to apply the inverse Radon transform to Eq. (17) and recover
W =K (W) = gy, [ine” — 2(ci(z) cos(z) + si(z) sin(z)], z = |k(s — 1) (18)

where ci(z) = — [7 <4 ds, si(z) = — [ 2! dr respectively are the cosine and sine integral functions. The
last step involves using Eq. (11) in conjunction with Eq. (18) for recovering fundamental solution U;;(x, <)
and its derivatives Uy, (x, ¢) in the domain defined by the algebraic transformation. Specifically, we obtain
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* _ 1 my my milly  —mall
U'(x, ¢) = 472 /ml (—mz m ) (mzftz myi; S:‘<)Wi€>|dm7 (19)
and
Ui(x, &) = R / ( m mz) (mlasﬁl — a0y > my sgn({(m,x — &))dm (20)
AL 4 Jypy \—m2 my ) \maQsiy  miQsity J| ’
with £ = 1, 2. In the above, the intermediate functions are
- 1 | BT . . . 1 1
i;(s,m, &) = H72(E) 2a, {ine™ — 2[ci(k;s) cos(k;s) + si(k;s) sin(k;s)] } = hl/z—(é)uj (s,m)
J
Oyl L1 ke — 2 4 2k [ei(ks) sin(k i(k k L o
tij(s,m, &) = W(E) 24, ke = LT 2K [ci(k;s) sin(k;s) — si(k;s) cos(k;s)] ¢ = W& (s, m)

and u} (s, m) = (1/2a;){ine™* — 2[ci(k;s) cos(k;s) + si(k;s) sin(k;s)]} with k; = \/p,/a;0.

What is now left is the simple, inverse algebraic transformation for returning to the original physical
domain. Thus, by combining Egs. (4), (19) and (20), we obtain the fundamental solution of Eq. (8) and its
derivatives as

(. &) = WP h (U (x, ©) 2

and
o (x, &) = h(z)C) s (x,1), z=xor¢ (22)

1

where uy (x,8) = (A" (x)) () Up+h ()R 2(E)U,  and finally  ug (x, ) = (h7'2(8)) -
W) Uy + b PR QU

It is observed that the fundamental solution and its derivatives for the inhomogeneous case in Egs. (21)
and (22) depend not only on the difference x — £ as in the homogeneous case, but also on x and ¢ separately.
We finally note that symmetry in the form U,; , = U;Z , holds, and mention in passing that a fundamental
solution for the anisotropic, yet otherwise homogeneous continuum was obtained using the Radon
transform by Wang and Achenbach (1994).

3.2. Asymptotic behavior of the fundamental solution

At this point, we also need the asymptotic expansions for the fundamental solution and its derivatives.
When field point x — &, continuity in A implies that (x) = k(&) + O(|]x — &]). Thus, from Eqgs. (21) and (22)
it is possible to obtained the reduced forms

w3 = (U = @y e — ¢, (3)
Tiim = Cijithy (24)
where wi, = (h7'2(8)) w2 (E)byIn|x — [ + h (E)py1/x — &|. Then,
. 1
Tiim = Cij (€) {hm(f)(’ll/z(f)),zbmk In|x — ¢ + hl(i)’?mulx_a}

1 1
= | = 3 ) sk &l s 25)
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4. Numerical solution of the BYP

Solution of BVP for dynamic fracture of a finite, inclined line crack in an inhomogeneous continuum
swept by elastic waves is accomplished by numerical implementation of a BIEM formulation in 2D.

4.1. Non-hypersingular traction BIEM

The BVP defined by Eqgs. (1)-(3) will now be recast into a system of integro-differential equations for
computing crack parameters such as the COD and, as a second step, the SIF. Specifically, let u; be the total
displacement field solution of Egs. (1)~(3) given as u; = u" + u5°, where u" is the incident wave field, which
in turn is a particular solution of Eq. (1). Furthermore, u° is the elastic wave field that is scattered by the
crack. Following Zhang and Gross (1998), we derive a set of displacement and traction boundary integral
equations (BIE) by using the equivalent divergence form of Eq. (1) and by assuming that both displace-
ments and tractions u;, #; satisfy Sommerfeld’s radiation condition at infinity. The integral form for the

scattered field is

i) == [ o) A, ()ds, (26)
SCF
for a given field point x¢S' and xe€R*\{x,=—b/a}. The stress tensor is given as
015 (0, x) = Chjmi(2)uyy; (v, x), where strains are defined by u,;, = a%ufni and z =y or x. Also, the corre-
sponding scattered traction field is
ty (x) = = Cpgu(x)ny (x) /S 01510 (v %) Aue(y)n;(v) dS,. (27)
In view of the boundary condition ¢ = —tg‘ given by Eq. (3), and using similar arguments as Zhang and

Gross (1998) regarding conservation law integrals, we obtain the following non-hypersingular traction BIE
formulation for field point x € S!:

0= Cous 0, 0) [ ([0 7008009 )0 00) B 0) 853 9) = 2, 00) Bt (9)1(3)) 85,

cr

(28)

The primary unknowns in the above equation are the crack interface displacements and strains Ay, Auy .
We note that in contrast to the homogeneous case, the fundamental solution and its derivatives computed
here depend on the relative distance between source and receiver (x — y), as well as on the field point
positions x and y separately.

4.2. Numerical implementation

The above non-hypersingular, traction-based BIE given in Eq. (28) will now be used to represent the
complete BVP, which consists of an unbounded inhomogeneous geological deposit containing an inclined
crack. All surface discretization schemes are accomplished by using just two types of line boundary ele-
ments (BE), namely: (i) the standard parabolic element for all surfaces excluding crack-tips; (ii) the quarter-
point element to model the asymptotic behavior of the displacement field in the vicinity of the crack tip.
These two BE, along with the Green’s functions derived in Section 3, are the basic building blocks for
generating an efficient BIEM software code to recover the steady-state, scattered elastic wave fields around
the buried cracks. Although the formulation is for time-harmonic conditions, it is always possible to
capture the transient nature the phenomenon by standard Fourier synthesis (Manolis and Beskos, 1987).
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At first, the scattered displacement field at any point in the unbounded domain is obtained following a
BVP solution of Eq. (28) for the COD, which is subsequently substituted in Eq. (26) for recovering u°.
Next, the dynamic SIFs are also calculated in a second step, following solution for the COD and using the
traction vector ¢ from the BVP at a given small distance » ahead of the crack tip (Aliabadi and Rooke,
1991) as Ky = lim,_g £,(x)v/2mr and Ky; = lim,_q £, (x)v/27r for Modes I and II, respectively. The SIF is then
normalized by its static value. More details on the above numerical implementation can be found elsewhere
(Rangelov et al., 2003).

Next, the accuracy and convergence characteristics of the proposed BIEM are established in the next
section by gauging the solution obtained for the benchmark problem of a buried, inclined line crack in an
elastic homogeneous half-plane subjected to incident time-harmonic P and SV waves. Following that, a
series of parametric studies are conducted for the inclined crack in an inhomogeneous medium in order to
quantify the sensitivity of the scattered wave field as well as of the stress concentration effect around the
buried crack to various problem-specific parameters, such as degree of soil inhomogeneity, crack inclina-
tion angle with respect to the horizontal and dynamic characteristics of the incident elastic waves.

5. Numerical examples

The non-hypersingular, traction-based BIEM presented in the previous section will now be used to
examine crack-wave interaction phenomena in a 2D inhomogeneous plane due to incoming P and SV waves
under time-harmonic conditions.

5.1. Material profiles

The various constraints that appeared during the fundamental solution procedure outlined in Sections 2
and 3 will now be examined in detail. It was established that the elastic parameter profiles are quadratic
functions of the depth coordinate x,, given in terms of function A(x), and that v = 0.25. Constants a, b
appearing in A(x) are determined from values at two reference points corresponding to a source-receiver
pair located at depths x, = 0 and x, = L, respectively, as shown in Fig. 1. Therefore, given that p(0,0) = p,
and u(0,L) = p,, we obtain the following profiles:

Ax) = p(x) = (Vi — Vi) (v2/L) + /i) (29)

Since the density profile is proportional to that of the elastic parameters, the two body wave speeds,
Cp(x) = /3uy/po and Cs(x) = /uy/py> are macroscopically constant.

In the present example, we consider an unbounded, firm soil deposit with background material prop-
erties of py = Ao = 180 x 10° N/m? and p, = 2000 kg/m?, giving Cp = 520 m/sec and Cs = 300 m/sec. Two
basic shear modulus profiles are examined here, namely one where the material becomes stiffer and one
where it becomes softer with increasing depth. More specifically, p(0,L) = 1.5, = 270 x 10° Pa in the
former case (corresponding to a 50% increase) and w(0,L) = 0.75u, = 135 x 10° Pa in the latter case
(corresponding to a 25% decrease), where the depth scale is chosen as either L = L; = 520m or L = L, = 40
m. The first length scale (Z;) over which the profiles vary coincides with the wavelength of the P wave for
the background material at an excitation frequency of 1.0 Hz, while the second length scale (L) is much
shorter and corresponds to higher frequencies of vibration. Thus, with regards to function
h(x) = (ax, +b)*, b= —1 and a is determined from values of the shear modulus at distance L from the
reference point. For instance, this gives a = (V1.5 — 1) /L for the stiffer profile and a = (v/0.75 — 1) /L for
the softer one. Finally, consider an embedded line crack of length |S.| = 10 m, centered at point M
(0,d = —100) and forming an angle ¢ € (—n/2,7/2) with respect to the horizontal axis Ox; (see Fig. 1).
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5.2. Incident wave field

For an incident planar P or SV wave, propagating at a direction angle 0 with respect to the horizontal, a
solution of the system of Eq. (1) yields

' (x, 0) = h P (x)UR (x, ) (30)

where displacement

Uin(x, 0)) _ D(-lkp){ (s:lorfg }eikp()tl cos 0+x; sin 6)

for the P wave and

in _ o sin 0 —iky (x1 cos O-+x; sin 0)
U™ (x,w) = D( 1ks){  cos 0 }e
for the SV wave. In the above, the two wave numbers are kp = w/Cp, ks = w/Cs A(previously referred to as
ki, k») and D is the amplitude of motion. The corresponding incident tractions £* are

" (x, ) = Copa (0)n; (x) (™2 () U (v, ),

— () CYm, ) [ PRV (5, 0) P U, ) (31)
Note that the incident P wave solution of Eq. (30), and the resulting tractions given in Eq. (31), are both
influenced by material inhomogenity through the presence of function A(x) and its derivatives. Strictly
speaking, there is no true plane wave solution in the inhomogeneous case. Thus, we use an incident function
of the type given by Eq. (30), which is the simplest possible solution of governing equation (1), in order to
recover the boundary conditions of Eq. (3) and then use the traction BIE formulation (see Eq. (28)) for the
numerical examples.

5.3. Numerical modeling details

At first, the SIF for a nonhomogeneous material described by function /(x) is calculated using a traction
formula (as mentioned in Section 4.2) and subsequently normalized by the following factor:

N = @*N, + oN, (32)

In the above,

Mo = 3 o)+ 2 e N = (s

and x, is the point just ahead of the crack-tip where tractions are calculated. We note that the leading term
in N is &N, for o> 1h7'(x,)|h2(x,)|Cp, while it becomes equal to wN; for o < 1h~!(x,)|h1(x,)|C,.
Moreover, the behavior of the dynamic solution for @ — 0 is of the order O(w), in contrast with the
homogeneous case, where it behaves as O(w?). The influence of inhomogenity when |h5(x,)| # 0 on the
dynamic solution for @ — 0 dictates a normalization of the solution by the factor given in Eq. (32). This
formula also gives a maximum value for the stress acting on the incident plane wave front, which is as-
sumed to remain finite as w — 0. Finally, the amplitude of the scattered displacement field is computed
directly using Eq. (26), after inserting the COD recovered from the solution of Eq. (28).

The details of the numerical scheme used in this work have been described by Rangelov et al. (2003), so
here we give some basic information pertinent to the present BVP. In particular, five BE are used for
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modeling the crack in the following way: The first BE is a left quarter-point element, i.e., an LQP-BE; the
second through fourth are ordinary BE; finally, the fifth is a right quarter-point element, i.e.; an RQP-BE.
The lengths of these five boundary elements are /; =0.75, [, =2.8, [5=29, [,=2.8, I5s=0.75 (m),
respectively. Also, the -co-ordinates of the shifted nodal points are & = 0.95 on the first and second BE and
& = —0.95 on the fourth and fifth BE, while for an ordinary quadratic BE the nodal points are at the two
edges and at the center. Finally, we mention that the fundamental solutions were evaluated using the
symbolic manipulation software Mathematica (1996), while the BIEM implementation software was pro-
duced by using standard Fortran programming (Lahey Fortran 95, 2000).

5.4. Numerical examples

The parametric study presented here investigates the sensitivity of the far-field scattered waves and of the
SIF in three different continua with a crack, namely the homogeneous, the stiffening (with increasing depth)
and the softening one. The key parameters identified for the study are (i) orientation angle ¢ € (—n/2,7/2)
of the crack with respect to the horizontal Ox; axis; (ii) incoming wave incidence angle 6 with respect to Ox;
and (iii) the material properties as given by dimensionless function A(x) (=1 for the homogeneous case),
which is set up for two different values of depth scale L. Note that normalization of the dynamic SIF is done
by using its static value for the homogeneous material, i.e., a =0, b = —1.

At first, Fig. 2 is a validation study that shows SIF (both modes I and II) for the homogeneous con-
tinuum normalized with respect to their corresponding static values, versus dimensionless frequency kpo
(where o = 0.5|S;| = 5 m is the half-length of the crack), for different values of the incident wave angle 0
and for a horizontal line crack (¢ = 0). This particular example serves to gauge the proposed non-hy-
persingular traction BIEM with the new frequency-dependent, elastodynamic fundamental solution derived
in a closed-form by algebraic and Radon transforms. The results are compared with the analytical solution
of Chen and Sih (1977). We observe in all the plots of Fig. 2, i.e., (a)-(d), an excellent agreement between
the two groups of results, which are obtained by what are essentially two very different methods, across the
entire frequency range of interest. In most instances the agreement is to within plotting accuracy, although
in a few isolated cases (usually at high kpo values) there is some divergence of the order of 1-3%.

Next, Figs. 3 and 4 give a normalized SIF (again both modes I and II) for the inhomogeneous continuum
versus dimensionless frequency, and more specifically at the left crack-tip of a finite crack, inclined by
¢ = 45° with respect to the horizontal, and for wave incidence angles of 8 = n/2 and 6 = ©/3, respectively.
More specifically, curves 1 through 5 in each plot are for the following sub-cases: Curve 1 is for the
‘background’ homogeneous case; curves 2 and 4 are for the stiffening material at two different depth scales
of Ly = 520 m and L, = 40 m; and curves 3 and 5 are for the softening material with Z; = 520 m and with
L, = 40 m, respectively. Finally, the (a) and (b) sets of plots (for Mode I and II cracks) are derived for an
incident P-wave, while the (c) and (d) sets of plots (again for Modes I and II) are for the SV-wave. The effect
of inhomogeneity is now clearly seen: Curves 1 through 3 are closely grouped together, and are bracketed
from above and below by curves 4 and 5. Since curve 4 is for the stiffening material across a short depth
scale (L, = 40 m), it is reasonable to expect that it will yield the smallest SIF value. At the other end, we
have curve 5 for the softening material with depth scale L, = 40 m, which yields maximum SIF values. In
sum, all plots are consistent with the fact that the SIF changes significantly (with respect to values recorded
for the homogencous ‘background’ material) when the effect of inhomogeneity is most pronounced, (i.e.,
when material properties vary rapidly over short distances), and less so when we have a ‘milder’ shear
modulus profile (i.e., a longer depth scale of L; = 520 m). Table 1 gives a good picture of this situation at
three selected values of kpa (0.1, 0.5 and 1.0), where it is observed that, on the average, the overshoot in all
SIFs (save for the SV-wave Mode II SIF) when referred to homogeneous background values, is about
+67% and —33% for the rapidly softening and stiffening profiles, respectively. This last SIF shows a far
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Fig. 2. SIF versus frequency at the left crack-tip of a line crack tracing angle ¢ = 0 with respect to the Ox;-axis: Curves 1 through 5

correspond to incident wave angles 6 = 0; n/2; n/3; 7/6; n/4 for (a,b) an incident P-wave and (c,d) an incident SV-wave. Also, (— ® )
the Chen and Sih (1977) results.

more pronounced overshoot of +1000% and —250%, respectively. Compared to all these values, the milder
profile yields minor differences when compared to the homogeneous case.

In Fig. 5, we show the normalized SIF for the inhomogeneous continuum versus incident wave angle, at
the left crack-tip of a finite crack inclined by ¢ = 45°, and at a fixed dimensionless frequency kpo. = 5.0 that
corresponds to a rather high frequency of vibration of 82.7 Hz. As before, curves 1 through 5 plot the
following sub-cases: Curve 1 is for homogeneous material, while the pairs 2 and 4 and 3 and 5 are for
stiffening and softening material, respectively, where the shear modulus varies across depth scales of 520 m
and 40 m in each pair. Also, the (a) and (b) sets of plots are for the incident P-wave and the (c) and (d) sets
are for the SV-wave, each set depicting the two crack modes previously mentioned. The effect of material
inhomogeneity observed here is consistent with that seen in all previous figures. Specifically, maximum and
minimum SIF values are respectively obtained for both softening and stiffening materials across the short
depth scale of L =40 m. The homogeneous material SIF is bracketed by those results, while the effect of
inhomogeneity is less pronounced across the larger depth scale of L = 520 m. As before, Table 2 sum-
marizes the maximum overshoot observed in the SIFs, in reference to the homogeneous background, for
the full range of incident wave angles at that particular frequency. We see an average overshot of about 50%
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Fig. 3. SIF versus frequency at the left crack-tip of a crack inclined by ¢ = 45° with respect to the Ox;-axis and at fixed incident wave
angle 6 = /2. Curves 1-5 are as follows: 1: homogeneous case; 2 and 4: stiffening shear modulus across depths of L = 520 m and
L =40 m; 3 and 5: softening shear modulus across depths of L = 520 m and L = 40 m. Cases (a), (b) are for incident P-waves and cases
(c), (d) are for SV-waves.

in the rapidly softening profile, of about 35% in the rapidly stiffening one, and less than 10% for the
remaining cases. In sum, Figs. 3-5 clearly demonstrate that the influence of material inhomogeneity on
elastic wave—crack interaction problems must be accounted for in order to obtain more accurate infor-
mation on the dynamic stress fields that develop near the crack-tips.

It is well known that a crack in an otherwise homogeneous continuum swept by a travelling disturbance
not only acts as a stress concentrator, but also as a wave scatterer. Thus, it is of interest to investigate how
the presence of inhomogeneity affects the scattered displacement field. To that purpose, we introduce two
observation points, 4 and B, with coordinates (0,d/2) and (0, 2d), respectively, where d = —100 m was the
depth of the crack from the reference horizontal axis (see Fig. 1). A travelling P wave that forms an incident
angle of 6 = n/2 with respect to the horizontal (i.e., moving directly upwards) is used, while the crack
orientation is ¢ = 45°. The variation of the displacement amplitude (both real and imaginary parts), as it
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Fig. 4. SIF versus frequency at the left crack-tip of a crack inclined by ¢ = 45° with respect to the Ox;-axis and at fixed incident wave
angle 0 = /3. Curves 1-5 are as follows: 1: homogeneous case; 2 and 4: stiffening shear modulus across depths of L = 520 m and
L =40 m; 3 and 5: softening shear modulus across depths of L = 520 m and L = 40 m. Cases (a), (b) are for incident P-waves and cases
(¢), (d) are for SV-waves.

Table 1

Overshoot (as %) of SIF versus dimensionless frequency for the inhomogeneous medium
kpa P-wave SV-wave

Case 1 Case 2 Case 4 Case 1 Case 2 Case 4

Mode I SIF
0.1 68 7 -36 54 8 -35
0.5 68 8 =35 68 7 -33
1.0 60 8 -36 70 11 -32
Mode II SIF
0.1 62 8 -31 1050 * -250
0.5 58 6 -32 1250 * -267
1.0 65 9 -33 1000 * -250

Case 1: softening material, L = 40 m; Case 2: softening material, L = 520 m; Case 3: stiffening material, L = 520 m; Case 4: stiffening
material, L = 40 m. (Note that the overshoot is negligible for Case 3; also, * indicates negligible values.)
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Fig. 5. SIF versus incident angle at the left crack-tip of a crack inclined by ¢ = 45° with respect to the Ox;-axis and at fixed frequency
of kpoo = 5. Curves 1-5 are as follows: 1: homogeneous case; 2 and 4: stiffening shear modulus across depths of L = 520 m and L =
40 m; 3 and 5: softening shear modulus across depths of L = 520 m and L = 40 m. Cases (a), (b) are for incident P-waves and cases (c),
(d) are for SV-waves.

Table 2
Maximum overshoot (as %) in SIF at kp = 0.50
Mode I SIF Mode II SIF
P-wave SV-wave P-wave SV-wave
Case 1 42 56 49 55
Case 2 1 3 2 4
Case 3 =7 =5 -9 -3
Case 4 -38 -38 -37 -36

Case 1: softening material, L = 40 m; Case 2: softening material, L = 520 m; Case 3: stiffening material, L = 520 m; Case 4: stiffening
material, L = 40 m.
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propagates through the medium in the absence of a crack with dimensionless frequency kpo (ranging from
0.1 to 2.0), is given in Figs. 6 and 8 for the two aforementioned observation stations. Three basic cases are
considered, namely the inhomogeneous material with a softening shear modulus (curve 1), the background
homogeneous material (curve 2) and the inhomogeneous material with a stiffening shear modulus (curve 3),
where in both cases the modulus variation is defined across the short depth scale of L = 40 m. The scattered
displacement field that develops because of wave-crack interaction is finally shown in Figs. 7 and 9 for
observation points 4 and B, respectively, and for the same cases as before.

The following points may now be made: (a) The incident wave travels with increasing amplitude at
higher frequencies, while the presence of inhomogeneity decreases/increases the vertical amplitude (u,) as
the shear modulus profile becomes stiffer/softer in the direction of propagation. As the wave reaches more
distant stations, (i.e., goes from 4 to B), the effect of inhomogeneity is cumulative in the sense that dis-
placements increase even more for the softening profile (and vice versa for the stiffening profile). Since the
ratio of the real to imaginary displacements remains nearly constant, there is relatively little signal dis-
persion with distance, which is a consequence of this rather special type of inhomogeneous material with
macroscopically constant wave speeds. (b) The presence of a line crack, inclined by 45° to the path of the
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Fig. 6. Incident P-wave field at observation point (0, —50) versus frequency for an incident angle 6 = n/2. Curves 1-3 respectively are
for the softening, the homogeneous and the stiffening material, with cases: (a) Re(uy) displacement; (b) Im(u,) displacement.
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Fig. 7. Scattered wave field at observation point (0, —50) versus frequency for an incident angle 6 = n/2 and a crack inclination angle
¢@ = n/4. Curves 1-3 respectively are for the softening, the homogeneous and the stiffening material, with cases: (a) Re(u;) dis-
placement; (b) Im(u,) displacement; (c) Re(u,) displacement; (d) Im(u,) displacement.

propagating wave, complicates the picture significantly. First we note the emergence of a sizeable horizontal
component of motion (u;) of the same magnitude as the vertical one. Next, we look at the observation
point located above the crack (i.e., 4), where we observe that the previous rather smooth frequency vari-
ation of the incident wave is now disturbed, with peaks in the response followed by low points. The only
consistent pattern of behavior here is that the spread between inhomogeneous (irrespective of the exact
type) and homogeneous material is far less pronounced (but still detectable) than before. This indicates the
relative importance of scattering in the presence of a crack versus inhomogeneity. The situation with
observation point B located below the crack is different. There, frequency dependence of the displacement
amplitude is more smooth and reminiscent of that exhibited by the incident wave. However, a sizeable
difference remains between vertical and horizontal components, with the former showing a very smooth
variation compared to the latter. Also, the relative importance of inhomogeneity is again re-established in
the sense that the spread between inhomogeneous and homogeneous materials is quite wide, especially for
the softening case. Table 3 summarizes some of these results by giving the maximum overshoot of inho-
mogeneous over homogeneous displacement response (real part) for both observation points, with and
without the crack. In the case of point 4, the overshoot range is 15-20% for the softening material and
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Fig. 8. Incident P-wave field at observation point (0, —200) versus frequency for an incident angle 6 = 7/2. Curves 1-3 respectively are
for the softening, the homogeneous and the stiffening material, with cases: (a) Re(u,) displacement; (b) Im(u,) displacement.

—25% to —30% for the stiffening material. For point B, this overshoot increases substantially and the
corresponding range is now 100-200% for the former material and —50% to —60% for the latter material.

5.5. Discussion

The parametric study presented in this section shows that graded materials may have a significant
influence on both near-field stress concentrations and far-field scattered wave motions. The values of the
dynamic SIFs that were computed were found to be quite sensitivity to (a) the frequency of the traveling
incident wave and (b) the variation of the material constants with depth. Although a very particular type of
imhomogeneous material was examined, whereby the elastic parameters and the density increase (or de-
crease) proportionally with depth and the material appears macroscopically constant exhibiting little dis-
persion, it seems plausible to argue that the same basic trends hold true for more general cases. This is a cause
for concern regarding fracture and fatigue processes not only in geological materials, but also in any modern,
functionally graded material with ramifications on their integrity and reliability during use. Furthermore, the
recovery of scattered wave fields in fractured inhomogeneous continua is important in earthquake engi-
neering for synthesis of artificial accelerograms and for soil-structure interaction studies. Finally, although
the results obtained herein are for a restricted type of geological inhomogeneity, the methodology is
applicable to different research fields such as non-destructive material testing and material science.
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Fig. 9. Scattered wave field at observation point (0, —200) versus frequency for an incident angle 0 = n/2 and a crack inclination angle
¢@ = n/4. Curves 1-3 respectively are for the softening, the homogeneous and the stiffening material, with cases: (a) Re(u;) dis-
placement; (b) Im(u,) displacement; (c) Re(u,) displacement; (d) Im(u,) displacement.

l—{/?ab):ierr?um overshoot (as %) in the real component of the displacement field u;
Observation point A Observation point B
Incident u, Scattered u, Scattered u, Incident u, Scattered u,; Scattered u,
Case 1 13 20 16 200 208 94
Case 2 -24 =27 =30 =55 -50 -63

Case 1: softening material, L = 40 m; Case 4: stiffening material, L = 40 m.

6. Conclusions

The present work concerns the development of an efficient BIEM for numerical solution of 2D elasto-
dynamic problems in cracked inhomogeneous media. The fundamental solutions entering the BIEM
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formulation are derived through combination of an algebraic transformation procedure in conjunction with
the Radon transform. They provide an exact representation of the displacement and traction fields in the
particular inhomogeneous medium under study due to a point force oscillating under steady-state condi-
tions. To the best of our knowledge, these solutions, at least in the form given herein, have not appeared in
the literature to date. They are subsequently employed within the context of a non-hypersingular, traction
BIEM for solution of wave propagation problems in non-homogeneous geological media with an internal
crack. The accuracy and convergence characteristics of the present numerical method are gauged through
the solution of a benchmark example. Subsequently, parametric studies are conducted regarding the dy-
namic response of an inclined crack, including sensitivity of both scattered displacement and stress wave-
fields that develop in the surrounding medium to the key problem parameters, namely degree of soil
inhomogeneity, crack characteristics, type and orientation of the incident elastic waves. Finally, the present
BIEM approach can be further developed and applied to more complex geological media, (with free-surface
topography, layering and in the presence of interface cracks) or alternatively, to other categories of
problems in mechanics, such as non-destructive testing evaluation of composite materials and of structural
components.
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